LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resonance assignment of the 128 kDa enzyme I dimer from Thermoanaerobacter tengcongensis

Photo by golfarisa from unsplash

Enzyme I (EI) of the bacterial phosphotransferase system (PTS) utilizes phosphoenolpyruvate (PEP) as a source of energy in order to transport sugars across the cellular membrane. PEP binding to EI… Click to show full abstract

Enzyme I (EI) of the bacterial phosphotransferase system (PTS) utilizes phosphoenolpyruvate (PEP) as a source of energy in order to transport sugars across the cellular membrane. PEP binding to EI initiates a phosphorylation cascade that regulates a variety of essential pathways in the metabolism of bacterial cells. Given its central role in controlling bacterial metabolism, EI has been often suggested as a good target for antimicrobial research. Here, we report the 1HN, 15N, 13C′, 1Hmethyl, and 13Cmethyl chemical shifts of the 128 kDa homodimer EI from the thermophile Thermoanaerobacter tengcongensis. In total 79% of the expected backbone amide correlations and 80% of the expected methyl TROSY peaks from U-[2H, 13C, 15N], Ileδ1-[13CH3], Val-Leu-[13CH3/12CD3] labeled EI were assigned. The reported assignments will enable future structural studies aimed at illuminating the fundamental mechanisms governing long-range interdomain communication in EI and at indicating new therapeutic strategies to combat bacterial infections.

Keywords: assignment 128; resonance assignment; thermoanaerobacter tengcongensis; 128 kda

Journal Title: Biomolecular NMR Assignments
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.