LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

13C and 15N chemical shift assignments of A117V and M129V human Y145Stop prion protein amyloid fibrils.

Photo from wikipedia

The C-terminally truncated Y145Stop variant of prion protein (PrP23-144) has been linked to a heritable prionopathy in humans and is also capable of triggering a transmissible prion disease in mice.… Click to show full abstract

The C-terminally truncated Y145Stop variant of prion protein (PrP23-144) has been linked to a heritable prionopathy in humans and is also capable of triggering a transmissible prion disease in mice. PrP23-144 can be converted from soluble monomeric form to amyloid under physiological conditions, providing an in vitro model for investigating the molecular basis of amyloid strains and cross-seeding barriers. Here, we use magic-angle spinning solid-state NMR to establish the sequential backbone and sidechain 13C and 15N chemical shift assignments for amyloid fibrils formed by the A117V and M129V mutants of human PrP23-144, which in the context of full length PrP in vivo are among the specific residues associated with development of Gerstmann-StraĆ¼ssler-Scheinker disease. The chemical shift data are utilized to identify amino acids comprising the rigid amyloid core regions and to predict the protein secondary structures for human PrP23-144 A117V and M129V fibrils.

Keywords: prion protein; a117v m129v; chemical shift

Journal Title: Biomolecular NMR assignments
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.