LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

1H, 13C and 15N chemical shift assignments of the C-terminal domain of human UDP-Glucuronosyltransferase 2B7 (UGT2B7-C).

Photo from wikipedia

The human UDP-glucuronosyltransferase (UGT) family of enzymes catalyze the covalent addition of glucuronic acid to a wide range of compounds, generally rendering them inactive. Although important for clearance of environmental… Click to show full abstract

The human UDP-glucuronosyltransferase (UGT) family of enzymes catalyze the covalent addition of glucuronic acid to a wide range of compounds, generally rendering them inactive. Although important for clearance of environmental toxins and metabolites, UGT activation can lead to inappropriate glucuronidation of therapeutics underlying drug resistance. Indeed, 50% of medications are glucuronidated. To better understand this mode of resistance, we studied the UGT2B7 enzyme associated with glucuronidation of cancer drugs such as Tamoxifen and Sorafenib. We report 1H, 13C and 15N backbone (> 90%) and side-chain assignments (~ 78% completeness according to CYANA) for the C-terminal domain of UGT2B7 (UGT2B7-C). Given the biomedical importance of this family of enzymes, our assignments will provide a key tool for improving understanding of the biochemical basis for substrate selectivity and other aspects of enzyme activity. This in turn will inform on drug design to overcome UGT-related drug resistance.

Keywords: 13c 15n; human udp; terminal domain; udp glucuronosyltransferase

Journal Title: Biomolecular NMR assignments
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.