An approach using method validation (MV) parameters, otherwise known as analytical figures of merit was combined with electrospray ionization high performance ion mobility spectrometry (ESI-HPIMS) to describe an approach for… Click to show full abstract
An approach using method validation (MV) parameters, otherwise known as analytical figures of merit was combined with electrospray ionization high performance ion mobility spectrometry (ESI-HPIMS) to describe an approach for evaluating drugs and explosives analysis in the field. MV parameters such as reduced mobility (Ko), conditional reduced mobility (Kc), resolving power (Rp), theoretical plates (N), linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), repeatability, range, and reporting limit were investigated and developed for eleven drugs and six explosives. Our investigation estimated resolving power at 66 ± 0.64 for the ESI-HPIMS used. The LOD’s calculated ranged from 0.45–2.97 ng of material electrosprayed into the ESI-HPIMS. The LOQ’s calculated falls in the range 4.11–8.63 ng of material electrosprayed into the ESI-HPIMS. The key findings from this investigation were the following: Kc proves to be a measure of the identity of an explosive or drug ion; a parameter that may be applied to help aid IMS devices when detecting drugs and explosives. MV parameters, especially, Kc, introduced in this study is an effective parameter for establishing a unique identity of a drug or explosive. A control chart is an effective way to monitor the performance of an instrument and may be a useful tool for establishing reliability of confirmatory data in forensic investigations. MV parameters may be a reliable, accurate and unique identification marker for target drugs and explosives capable of differentiating these substances from false positive responses.
               
Click one of the above tabs to view related content.