LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis, Xinjiang, China

Photo from wikipedia

This study discusses measures for improving the precision of optical remote-sensing detection of soil salinity and the possibility of soil salinity detection at different depths of 0–10 cm, 10–30 cm and 30–50 cm… Click to show full abstract

This study discusses measures for improving the precision of optical remote-sensing detection of soil salinity and the possibility of soil salinity detection at different depths of 0–10 cm, 10–30 cm and 30–50 cm using optical remote-sensing data, and analyzes the mechanism by which deep-layer soil salinity influences the soil spectrum. The findings show that there is a high and significant correlation between soil-spectral reflectance and soil salinity, and that the correlation between soil-spectral reflectance and soil salinity decreases gradually from the blue band to the shortwave infrared band of ETM + images. The partial least squares regression model is used to estimate soil salinity in the 0–10-cm surface-layer, confirming that the selected soil-salinity-detecting bands of Band 1 and Band 4, the established difference soil salinity index, the derivative of the normalized differential vegetation index, and the deep-layer soil moisture can improve the precision of remote-sensing detection of surface-layer soil salinity. The precise estimation of the 0–10-cm surface-layer soil salinity with variables features an R2 = 0.752, an RMSE = 26.84 g/Kg, and a p = 0.000. There is a strong mediating effect between deep-layer soil salinity, 0–10-cm surface-layer soil salinity, and soil spectral reflectance in the study area; namely, deep-layer soil salinity influences soil spectral reflectance by influencing surface-layer soil salinity. There is a significant and very strong power function relation between 0 and 10-cm surface-layer soil salinity and deep-layer soil salinity. Based on this relationship, this study estimates deep-layer soil salinity using optical remote-sensing images.

Keywords: soil; layer soil; soil salinity; remote sensing

Journal Title: Earth Science Informatics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.