Three series of laboratory vaporization experiments were conducted to investigate the carbon isotope fractionation of low molecular weight hydrocarbons (LMWHs) during their progressive vaporization. In addition to the analysis of… Click to show full abstract
Three series of laboratory vaporization experiments were conducted to investigate the carbon isotope fractionation of low molecular weight hydrocarbons (LMWHs) during their progressive vaporization. In addition to the analysis of a synthetic oil mixture, individual compounds were also studied either as pure single phases or mixed with soil. This allowed influences of mixing effects and diffusion though soil on the fractionation to be elucidated. The LMWHs volatilized in two broad behavior patterns that depended on their molecular weight and boiling point. Vaporization significantly enriched the 13C present in the remaining components of the C6–C9 fraction, indicating that the vaporization is mainly kinetically controlled; the observed variations could be described with a Rayleigh fractionation model. In contrast, the heavier compounds (n-C10–n-C12) showed less mass loss and almost no significant isotopic fractionation during vaporization, indicating that the isotope characteristics remained sufficiently constant for these hydrocarbons to be used to identify the source of an oil sample, e.g., the specific oil field or the origin of a spill. Furthermore, comparative studies suggested that matrix effects should be considered when the carbon isotope ratios of hydrocarbons are applied in the field.
               
Click one of the above tabs to view related content.