LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CXCR4 expression by mesenchymal stromal cells is lost after use of enzymatic dissociation agents, but preserved by use of non-enzymatic methods

Photo from wikipedia

In recent years, multipotent mesenchymal stromal cells (MSCs) have demonstrated tremendous potential for use in regenerative medicine. CXCR4, the receptor for CXCL12, is highly expressed by bone marrow (BM) MSCs… Click to show full abstract

In recent years, multipotent mesenchymal stromal cells (MSCs) have demonstrated tremendous potential for use in regenerative medicine. CXCR4, the receptor for CXCL12, is highly expressed by bone marrow (BM) MSCs and the CXCR4/CXCL12 axis has been shown to be important for migration and homing of BM-MSCs. Typically, MSCs used for clinical applications are collected after culture expansion using enzymatic methods, such as trypsin. Here, we compared different commercially available enzymatic and non-enzymatic methods for collection and dissociation of MSCs from culture plastics and their effects on CXCR4 expression by MSCs. We found that whereas non-enzymatic dissociation buffers and methods maintained CXCR4 expression, all tested enzymatic dissociation solutions dramatically decreased expression of CXCR4. We, therefore, strongly recommend the use of non-enzymatic dissociation methods, followed by filtration through a cell strainer to obtain single cell suspensions, in order to preserve maximal CXCR4 expression and optimal homing of cells.

Keywords: dissociation; cxcr4 expression; enzymatic dissociation; enzymatic methods; non enzymatic; expression

Journal Title: International Journal of Hematology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.