LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Caspase-mediated cleavage of miRNA processing proteins Drosha, DGCR8, Dicer, and TRBP2 in heat-shocked cells and its inhibition by HSP70 overexpression

Photo by ddenkovski from unsplash

Cells respond to stress through adaptive mechanisms that limit cellular damage and prevent cell death. MicroRNAs act as regulators of stress responses and stress can impact the functioning of miRNA… Click to show full abstract

Cells respond to stress through adaptive mechanisms that limit cellular damage and prevent cell death. MicroRNAs act as regulators of stress responses and stress can impact the functioning of miRNA biogenesis pathways. We were interested in the effect that severe proteotoxic stress capable of inducing apoptosis may have on miRNA biogenesis and the impact of the molecular chaperone protein HSP70 under these conditions. We found that the miRNA processing enzymes Drosha and Dicer and their accessory proteins DGCR8 and TRBP2 are cleaved by caspases in apoptotic cells. Overexpression of HSP70 prevented caspase activation and the degradation of these processing proteins. Caspase cleavage of TRBP2 was mapped to amino acid 234 which separates the two dsRNA-binding domains from the C-terminal Dicer interacting domain. Overexpression of TRBP2 was found to increase miRNA maturation, while expression of either of the fragments generated by caspase cleavage impaired maturation. These results indicate that inactivation of miRNA biogenesis is a critical feature of apoptosis and that cleavage of TRBP2, rather than simply a loss of function, serves to create positive acting inhibitors of pre-miRNA maturation.

Keywords: mirna processing; trbp2; cleavage; overexpression; dicer; hsp70

Journal Title: Cell Stress and Chaperones
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.