Radiomics, which involves the extraction of large numbers of quantitative features from medical images, has attracted attention in cancer research. In radiomics analysis, tumor segmentation is a crucial step. In… Click to show full abstract
Radiomics, which involves the extraction of large numbers of quantitative features from medical images, has attracted attention in cancer research. In radiomics analysis, tumor segmentation is a crucial step. In this study, we evaluated the potential application of radiomics for predicting the histology of early stage non-small cell lung cancer (NSCLC) by analyzing interobserver variability in tumor delineation. Forty patient datasets were included in this study, 21 involving adenocarcinomas and 19 involving squamous cell carcinomas. All patients underwent stereotactic body radiotherapy treatment. In total, 476 features were extracted from each dataset, representing treatment planning, computed tomography images, and gross tumor volume (GTV). The definition of GTV can significantly affect the histology prediction. Therefore, in the present study, the effect of interobserver tumor delineation variability on radiomic features was evaluated by preparing 4 volumes of interest (VOIs) for each patient, as follows: the original GTV (which was delineated at treatment planning); two GTVs delineated retrospectively by radiation oncologists; and a semi-automatic GTV contoured by a medical physicist. Radiomic features extracted from each VOI were then analyzed using a naïve Bayesian model. Area-under-the-curve (AUC) analysis showed that interobserver variability in delineation is a significant factor in radiomics performance. Nevertheless, with 8 selected features, AUC values averaged over the VOIs were high (0.725 ± 0.070). The present study indicated that radiomics has potential for predicting early stage NSCLC histology despite variability in delineation. The high prediction accuracy implies that noninvasive histology evaluation by radiomics is a promising clinical application.
               
Click one of the above tabs to view related content.