For some products, degradation mechanisms change during testing, and therefore, their degradation patterns vary at different points in time; these points are called change-points. Owing to the limitation of measurement… Click to show full abstract
For some products, degradation mechanisms change during testing, and therefore, their degradation patterns vary at different points in time; these points are called change-points. Owing to the limitation of measurement costs, time intervals for degradation measurements are usually very long, and thus, the value of change-points cannot be determined. Conventionally, a certain degradation measurement is selected as the change-point in a two-phase degradation process. According to the tendency of the two-phase degradation process, the change-point is probably located in the interval between two neighboring degradation measurements, and it is a fuzzy variable. The imprecision of the change-point may lead to the incorrect product’s reliability evaluation results. In this paper, based on the fuzzy theory, a two-phase degradation model with a fuzzy change-point and a statistical analysis method are proposed. First, a two-phase Wiener degradation model is developed according to the membership function of the change-point. Second, the reliability evaluation is carried out using maximum likelihood estimation and a fuzzy simulation approach. Finally, the proposed methodology is verified via a case study. The results of the study show that the proposed methodology can achieve more believable reliability evaluation results compared with those of the conventional approach.
               
Click one of the above tabs to view related content.