LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shock Response Analysis of a Large LNG Storage Tank Under Blast Loads

Photo from wikipedia

Ensuring the safe operation of large LNG storage tank projects under blast loads is very important. First, using LS-DYNA software, numerical simulations of air blast wave propagation are studied with… Click to show full abstract

Ensuring the safe operation of large LNG storage tank projects under blast loads is very important. First, using LS-DYNA software, numerical simulations of air blast wave propagation are studied with the ALE algorithm and fluid-solid coupling theory. A new corrected formula for the peak overpressure is proposed based on the numerical results, and its accuracy is verified by comparing the numerical results with the empirical formula and test results. Then, a finite element model of a large LNG storage tank is built, assuming that the explosion source is located 10 m away from both the ground and the tank wall. This model is used to analyse the overpressure and dynamic response of the outer concrete tank and to predict the TNT equivalent quantity that the tank can withstand. The results show that the tank wall facing the burst loads is in a more dangerous state and that the principal tensile stress increases approximately linearly with increasing TNT equivalent quantity. When the TNT equivalent quantity reaches 2.5 t, concrete element failure occurs on the centre facing the explosions, and the outer tank structure is damaged. The conclusions can provide a reference for the blast-resistant design of large LNG storage tanks.

Keywords: storage tank; lng storage; large lng; blast loads; tank

Journal Title: KSCE Journal of Civil Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.