In the case of sudden surcharge loading, shallow shield tunnels in areas with soft soil experience substantial deformation responses. It is very important to understand the different loading modes and… Click to show full abstract
In the case of sudden surcharge loading, shallow shield tunnels in areas with soft soil experience substantial deformation responses. It is very important to understand the different loading modes and control measures above the shallow shield tunnels in soft soil for improving the safety of tunnel structure and reducing the influence of deformation. In this study, a three-dimensional numerical model of shallow shield tunnels in soft soil is established with FLAC. Ground and tunnel deformations are analyzed under different loading modes, and the effects of different deformation control measures are also studied. The numerical simulations in this paper show that the surface and tunnel deformation responses vary when induced by different loading modes above shallow shield tunnels in soft soil. After surface hardening with a 20-cm-thick layer of C20 concrete, the surface settlement is effectively controlled, and the uneven longitudinal settlement of the tunnel vault is improved. However, controlling the height of the surcharge is the most direct deformation control method. When the height of the surcharge is reduced from 6 m to 4 m and 2 m, the maximum ground settlement is reduced by 37.8% and 69.4%, respectively, and the maximum longitudinal settlement of the tunnel vault is reduced by 35.3% and 65.2%, respectively. During the operation of shallow shield tunnel in soft soil area, sudden surcharge loading should not be allowed. In the inevitable case, the surcharge loading on one side of the tunnel should be prevented and the surcharge loading height should be strictly limited.
               
Click one of the above tabs to view related content.