LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of high concentrated slightly acidic hypochlorous acid generator for food safety

Photo from wikipedia

Having a mild acidic pH of 5-6.5, Hypochlorous acid (HOCl) is a harmless disinfectant having excellent sterilizing capability for use in agriculture, medicine and food industry. Recently, the use of… Click to show full abstract

Having a mild acidic pH of 5-6.5, Hypochlorous acid (HOCl) is a harmless disinfectant having excellent sterilizing capability for use in agriculture, medicine and food industry. Recently, the use of non-diaphragm electrolytic cell has shown great potential in producing Slightly acidic electrolyzed water (SAEW). However, the effect of various physical properties such as electrode gap, flow rate, current, bubble formation and temperature conditions are still under investigation. In this study, we produced 40 ppm SAEW by using a self-developed non-diaphragm electrolytic cell that electrolyzed 6 % Hydrochloric acid (HCl) with H2 and Cl2 gas as by products. The tested range of electrolyte flow rate was 2-4 mL/min. The effect of current was studied in the range of 10-15 A. The results indicate that bubble generation by increased current decreased the average convection heat transfer coefficient between the electrode and electrolyte resulting in increased temperature. Moreover, the bubbles reduced the surface area for an efficient electrolytic reaction resulting in a decrease in available chlorine concentration. Hence, an optimized flow rate of 3 mL/min at 13 A current were found to be best process conditions for SAEW generation when the electrode size is 4 cm by 14 cm. Furthermore, the produced high concentrated HOCl showed excellent sanitization efficacy against various Escherichia coli concentrations (105-108 cfu/mL).

Keywords: slightly acidic; high concentrated; acidic hypochlorous; acid; food; hypochlorous acid

Journal Title: Journal of Mechanical Science and Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.