In this study, the hydraulic performance of a mixed-flow pump depending on the impeller hub ratio was analyzed using Computational- fluid-dynamics (CFD). The impeller inlet shape varies according to the… Click to show full abstract
In this study, the hydraulic performance of a mixed-flow pump depending on the impeller hub ratio was analyzed using Computational- fluid-dynamics (CFD). The impeller inlet shape varies according to the hub ratio even at the same specific speed. It is important to ensure an optimum impeller design according to the hub ratio in order for the impeller shape to provide the desired performance at constant specific speed. The design variables of inlet part for meridional plane and vane plane development were defined for optimum impeller design. The objective functions were defined as the total head and total efficiency of the mixed-flow pump impellers. The optimum impeller design was carried out by controlling the design variables of impeller inlet parts by using the Response-surface-method (RSM). The tendency of impeller design variables depending on the hub ratio was identified by analyzing the optimum impeller design. Further, the impeller shape was designed on the basis of the tendency of the design variables depending on the hub ratio. Finally, the performance of an impeller with the designed shape was verified by numerical analysis.
               
Click one of the above tabs to view related content.