LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal characteristics of an ammonia-charged closed-loop pulsating heat pipe

Photo from wikipedia

At this age, engineering applications are demanding effective ways of heat recovery and energy savings for their optimum performance. Among other cooling techniques, pulsating heat pipes have emerged as a… Click to show full abstract

At this age, engineering applications are demanding effective ways of heat recovery and energy savings for their optimum performance. Among other cooling techniques, pulsating heat pipes have emerged as a convenient and cost effective thermal design solution due to its excellent heat transfer capability, high thermal efficiency and structural simplicity. The paper presents an experimental study on the operational limit of an aluminum closed-loop pulsating heat pipe (CLPHP) charged with ammonia. It consists of total 14 turns of aluminum pipe with 3 mm inner and 4 mm outer diameter. Ammonia was used as working fluid with 3 different filling ratios such as 0.4, 0.6 and 0.8. Operation orientations were vertical, 30°, 45°, 60°, 90° and 180° inclinations. Constant electric heat input of 36 W was applied to the heating block and temperature rise in various sections was monitored till steady state was reached. Temperature was measured at different locations of the CLPHP by using thermocouples. The effects of operational orientations and filling ratios were investigated on heat transfer by working fluid Q̇php (Watt), overall heat transfer coefficient U (W/m2 °C) and thermal resistance R (°C/W) considering the measured temperature. The result shows that, 0.4 and 0.6 fill ratios and inclination angle of 30º give better result than any other arrangements for CLPHP.

Keywords: heat; closed loop; loop pulsating; pulsating heat; heat pipe

Journal Title: Journal of Mechanical Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.