LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deformation analysis of rubber seal assembly considering uncertainties in mechanical properties

Photo from wikipedia

Rubber seals are used in the assemblies of mechanical parts in automobiles and aircrafts to prevent lubricant leakage and inclusion of foreign object. Because of the recent increase in the… Click to show full abstract

Rubber seals are used in the assemblies of mechanical parts in automobiles and aircrafts to prevent lubricant leakage and inclusion of foreign object. Because of the recent increase in the warranty periods of mechanical parts for automobiles, there is a need for longer service lives than those of existing products, and there is an even greater need for performance-related reliability during usage. This study analyzes the deformation behavior of rubber seals, including an overmold, used in the assemblies of mechanical parts. To improve the reliability of the analysis for rubber seal, three types of static experiments on rubber were conducted to obtain rubber properties. The experimental results were used to perform a hyper-elastic analysis considering rubber seal contact. The deformation analysis for rubber seal was performed to predict the performance after the assembling process. Moreover, a Monte Carlo simulation considering the probabilistic distribution of the mechanical properties of the rubber was performed to identify the effect of uncertainties in the rubber properties on deformation behavior of rubber seal. The pre- and post-deformation distributions of the rubber seal assembly were derived from the results of the Monte Carlo simulation, and they were used to evaluate the stability of the mechanical parts during the assembling process.

Keywords: rubber seal; deformation; rubber; analysis rubber

Journal Title: Journal of Mechanical Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.