This research introduces a 6-degree-of-freedom parallel manipulator with a reconfigurable fixed base; the manipulator performance has been evaluated to select the most suitable reconfiguration system. The optimal design of the… Click to show full abstract
This research introduces a 6-degree-of-freedom parallel manipulator with a reconfigurable fixed base; the manipulator performance has been evaluated to select the most suitable reconfiguration system. The optimal design of the parallel manipulator refers to the enhancement of robot behavior achieved by the geometrical variation of the fixed platform. Motion/force transmission, with the aid of the principle of power conservation, defines the manipulator capacity to transmit its force from the actuated joints to the end-effector from different reconfiguration approaches and vice versa considering the stiffness analysis. Results allow inferring that reconfiguration of the fixed base enhances the performance of this parallel manipulator. The proposal of the reconfiguration system allows obtaining a reconfigurable parallel robot with the minimum number of actuators.
               
Click one of the above tabs to view related content.