LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Observer-based friction compensation in heavy-duty parallel robot control

Photo from wikipedia

This paper presents an experimental study on friction compensation for the high-precision tracking control of parallel manipulators. A Luenberger-like observer (LLO) and an extended state observer (ESO) are designed and… Click to show full abstract

This paper presents an experimental study on friction compensation for the high-precision tracking control of parallel manipulators. A Luenberger-like observer (LLO) and an extended state observer (ESO) are designed and implemented in real-time control of a 6-DoF heavy-duty Stewart-Gough platform (SGP). The dynamic Lu-Gre model is used in the identification of friction. Performances of the proposed observer-based friction compensators are compared to those of a model-based compensator in computed torque control. Experimental results show that the observer-based compensators significantly improve the tracking performances in high speed motions. Among the investigated observers, the ESO results in minimum RMS error in position tracking. Improvement in position tracking at velocity reversals of the individual leg motions is also observed with the contribution of observer-based compensation. The observer error dynamics is exponentially stable, and the convergence rate can be arbitrarily increased by tuning the observer gain.

Keywords: control; friction; observer based; heavy duty; friction compensation

Journal Title: Journal of Mechanical Science and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.