LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaporation of a liquid film in a microchannel under the action of a co-current dry gas flow

Photo from wikipedia

A joint motion of thin liquid film and dry gas in a microchannel is investigated numerically at different values of initial concentration of the liquid vapor in the gas phase,… Click to show full abstract

A joint motion of thin liquid film and dry gas in a microchannel is investigated numerically at different values of initial concentration of the liquid vapor in the gas phase, taking into account the evaporation process. Major factors affecting the temperature distribution in the liquid and gas phases are as follows: transfer of heat by liquid and gas flows, heat loses due to evaporation, diffusion and heat transfer. The velocity and temperature fields in the liquid and gas phases, as well as the vapor concentration in the gas, were calculated. It has been established that in the zone of entry of flows into the channel near the interface, thermal and concentration boundary layers are formed, whose properties differ from the classical ones. Comparisons of the numerical results for the case of the dry gas and for the case of equilibrium concentration of vapor in the gas have been carried out. It is shown that use of dry gas enhances the heat dissipation from the heater. It is found out that not only intense evaporation occurs near the heating areas, but also in both cases vapor condensation takes place below the heater in streamwise direction.

Keywords: liquid; evaporation; liquid film; gas; dry gas

Journal Title: Microgravity Science and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.