In this study, central composite design (CCD) based on response surface methodology (RSM) was employed to optimize parameters of melt-spinning process of poly(ethylene terephthalate) partially oriented multifilament yarn (POMFY). On… Click to show full abstract
In this study, central composite design (CCD) based on response surface methodology (RSM) was employed to optimize parameters of melt-spinning process of poly(ethylene terephthalate) partially oriented multifilament yarn (POMFY). On the basis of a four-variable CCD, RSM was used to determine the effects of spinning temperature, spinning pressure, take-up velocity and quenching air velocity on the levels of the elongation of POMFY as the response. The POMFY samples were also characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. By applying a quadratic regression analysis, an equation indicating the effect of each variables on the response was developed. The predicted values of the parameters showed excellent agreement with the experimental values (R2=0.9565, Adjusted-R2=0.916). Moreover, the results confirmed that the CCD mathematical model was a suitable method to optimize the melt-spinning parameters of POMFY in an industrial scale.
               
Click one of the above tabs to view related content.