LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An improved shear lag model for predicting stress distribution in hybrid fiber reinforced rubber composites

Photo by terri_bleeker from unsplash

An improved micromechanical shear lag model, which considers the interphase and bonded fiber end, is developed to investigate the load-carrying characteristics and stress profiles in hybrid aramid/sepiolite fiber reinforced rubber… Click to show full abstract

An improved micromechanical shear lag model, which considers the interphase and bonded fiber end, is developed to investigate the load-carrying characteristics and stress profiles in hybrid aramid/sepiolite fiber reinforced rubber composites. The properties of the equivalent matrix, which is combination of sepiolite fiber and rubber matrix, are determined by Mori-Tanaka method. The axial and shear stresses at the fiber end are resolved by the imaginary fiber technique. The results obtained from the improved model show the tensile stress has a maximal at the real fiber center and the interfacial shear stress has a maximal at the end of the real fiber. Comparing with the results from Tsai’s model, the improved model has a better agreement with the numerical simualtion results. The effects of the imaginary fiber length on the stress transfer are analyzed and the results show that the effects can be ignored when the imaginary fiber length is greater than twice of the fiber radius. The effects of interphase modulus and thickness on the maximal axial and shear stresses are discussed. The results show that the interphase modulus and thickness of about 106.3 MPa and 0.2 μm are optimal to prevent interfacial debonding and improve the strength of hybrid fiber reinforced rubber composites.

Keywords: rubber composites; fiber reinforced; fiber; model; reinforced rubber

Journal Title: Fibers and Polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.