LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrical properties of graphene/waterborne polyurethane composite films

Photo by briangarrityphoto from unsplash

Graphene is classified as a carbon-based material. Structurally, graphene is made up of carbon-based two-dimensional atomic crystals and a one atom thick planar sheet of sp2-bonded carbon atoms. This sort… Click to show full abstract

Graphene is classified as a carbon-based material. Structurally, graphene is made up of carbon-based two-dimensional atomic crystals and a one atom thick planar sheet of sp2-bonded carbon atoms. This sort of arrangement in graphene makes it a unique material with exceptional mechanical, physicochemical, thermal, electrical, optical, and biomedical properties. Methods for graphene-based fabric production mainly use graphene-based materials such as graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) coated on fabric or yarn. Waterborne polyurethane (WPU) is one of the most rapidly developing and active branches of polyurethane chemistry. More and more attention is being paid to graphene-coated fabrics owing to their low temperature flexibility, the presence of zero or very few VOCs (volatile organic compounds), water resistance, pH stability, superior solvent resistance, excellent weathering resistance, and desirable chemical and mechanical properties. It is used as a coating agent or adhesive for fibers, textiles, and leather. Also, graphene-containing materials have been used to enhance the properties of WPU. In this study, graphene/WPU composite solution and film was prepared to conduct basic research for developing electrical heating textiles which is not harmful to the human body, flexible and excellent in electrical properties. Graphene/WPU composite solutions were prepared with a graphene content of 0, 2, 4, 8, and 16 wt%, and graphene/WPU film was prepared with solution casting method. The graphene contents were analyzed for their surface morphology, electrical properties, and electrical heating properties.

Keywords: graphene wpu; graphene; properties graphene; waterborne polyurethane; electrical properties

Journal Title: Fibers and Polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.