LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical, Thermal, and Swelling Properties of Cross-linked Hydrogels Based on Oxidized Cellulose Nanowhiskers and Chitosan/poly(vinyl alcohol) Blends

Photo from wikipedia

Cross-linked hydrogels of chitosan/poly(vinyl alcohol) (PVA)/oxidized cellulose nanowhiskers (CNWs) were prepared by using oxidized CNWs as a cross-linker. The effects of the oxidation level of CNWs on the swelling behavior,… Click to show full abstract

Cross-linked hydrogels of chitosan/poly(vinyl alcohol) (PVA)/oxidized cellulose nanowhiskers (CNWs) were prepared by using oxidized CNWs as a cross-linker. The effects of the oxidation level of CNWs on the swelling behavior, thermal stability, viscoelastic properties and compressive strength of the hydrogels were studied. Chemical cross-links, hydrogen bonds, as well as nanofiller reinforcement between the three materials played a major role in determining the properties of the hydrogels. Swelling test results showed that the incorporation of oxidized CNWs decreased the water absorbability of the hydrogels due to the increase in cross-linking degree. Viscoelastic properties of the hydrogels with oxidized CNWs was increased by 537 % in storage modulus, from 4.65 kPa to 29.6 kPa. Compressive strength of 181.5 kPa at 50 % strain was observed from the cross-linked hydrogels, compared with 21.2 kPa of the non-cross-linked hydrogels. The thermal experiments showed that the chemical cross-linking slightly increase the resistance toward thermal degradation of the hydrogels.

Keywords: cross linked; chitosan poly; vinyl alcohol; linked hydrogels; poly vinyl

Journal Title: Fibers and Polymers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.