LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the expression of recombinant small laccase in Pichia pastoris by a double promoter system and application in antibiotics degradation.

Low-expression levels remain a challenge in the quest to use the small laccase (rSLAC) as a viable catalyst. In this study, a recombinant Pichia pastoris strain (rSLAC-GAP-AOX) producing rSLAC under… Click to show full abstract

Low-expression levels remain a challenge in the quest to use the small laccase (rSLAC) as a viable catalyst. In this study, a recombinant Pichia pastoris strain (rSLAC-GAP-AOX) producing rSLAC under both AOX and GAP promoters (located in two different plasmids) was generated and cultivated in the presence of methanol and mixed feed (methanol:glycerol). Induction with methanol resulted in a maximum laccase activity of 1200 U/L for rSLAC-GAP-AOX which was approximately 2.4-fold higher than rSLAC-AOX and 5.1-fold higher than rSLAC-GAP. The addition of methanol:glycerol in a stoichiometric ratio of 9:1 consistently improved biomass and led to a 1.5-fold increase in rSLAC production as compared to induction with methanol alone. The rSLAC removed 95% of 5 mg/L ciprofloxacin (CIP) and 99% of 100 mg/L tetracycline (TC) in the presence of a mediator. Removal of TC resulted in complete elimination of antibacterial activity while up to 48% reduction in antibacterial activity was observed when CIP was removed. Overall, the present study highlights the effectiveness of a double promoter system in enhancing SLAC production.

Keywords: promoter system; laccase; rslac; small laccase; pichia pastoris; double promoter

Journal Title: Folia microbiologica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.