LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional Performance of Three Invasive Marenzelleria Species Under Contrasting Ecological Conditions Within the Baltic Sea

Photo by bostonpubliclibrary from unsplash

A 4-week laboratory experiment investigated the behaviour (survival and bioirrigation) and impact of the invasive polychaetes Marenzelleria viridis, M. neglecta and M. arctia on sediment-water solutes exchange, porewater chemistry, and… Click to show full abstract

A 4-week laboratory experiment investigated the behaviour (survival and bioirrigation) and impact of the invasive polychaetes Marenzelleria viridis, M. neglecta and M. arctia on sediment-water solutes exchange, porewater chemistry, and Fe and P interactions in high-salinity sandy sediment (HSS) and low-salinity muddy sediment (LSM) from the Baltic Sea. M. viridis showed deep burrowing with efficient bioirrigation (11 L m−2 day−1) and high survival (71%) in HSS, while M. arctia exhibited shallow burrowing with high bioirrigation (12 L m−2 day−1) and survival (88%) in LSM. M. neglecta behaved poorly in both ecological settings (bioirrigation, 5–6 L m−2 day−1; survival, 21–44%). The deep M. viridis bioirrigation enhanced total microbial CO2 (TCO2) production in HSS by 175% with a net efflux of NH4+ and PO43−, at rates 3- to 27-fold higher than for the other species. Although the shallow and intense bioirrigation of M. arctia in LSM stimulated microbial TCO2 production to some extent (61% enhancement), the nutrient fluxes close to zero indicate that it effectively prevented the P release. Porewater Fe:PO43− ratios revealed that the oxidizing effect of M. arctia bioirrigation increased the PO43− adsorption capacity of LSM twofold relative to defaunated controls while no buffering of PO43− was detected in M. viridis HSS treatment. Therefore, the different behaviour of the three species in various environments and the sharp contrast between M. viridis and M. arctia effects on C, N and P cycling must be considered carefully when the ecological role of Marenzelleria species in the Baltic Sea is evaluated.

Keywords: bioirrigation; arctia; marenzelleria species; baltic sea

Journal Title: Estuaries and Coasts
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.