LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design optimization of thin-walled circular tubular structures with graded thickness under later impact loading

Photo from wikipedia

In order to improve the crashing performance under lateral impact scenario, a thin-walled circular tube with functionally graded thickness (FGT) is introduced with its superior performance in this paper. The… Click to show full abstract

In order to improve the crashing performance under lateral impact scenario, a thin-walled circular tube with functionally graded thickness (FGT) is introduced with its superior performance in this paper. The wall thickness of the FGT tubual structure is graded along the axial direction. Based on the assumed graded thickness function, several important parameters (such as the graded exponent, the tube diameter and yield stress) are selected and their effects on dynamic energy absorption characteristics are discussed. The analyzed results show that the FGT has better crashworthiness in special energy absorption (SEA) and crash force efficiency (CFE) than uniform thickness (UT) tube. Then, the optimization design is further employed to obtain the Pareto fronts of the graded configuration under lateral impact loading. Note that the specific energy absorption (SEA) and crashing force efficiency (CFE) are regarded as the objectives, and the grading exponent, yield stress and diameter are defined as the design variables. The surrogate model with the best accuracy is chosen by error analysis for improving the accuracy of optimization process. Thus, the optimal solution is reasonably obtained and analyzed. The optimal results indicate that the FGT structures have significant potential applications into vehicle body especially under later impacting event.

Keywords: walled circular; thin walled; optimization; thickness; graded thickness; design

Journal Title: International Journal of Automotive Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.