Curcumin was modified with 2-hydroxypropyl- $$\beta$$ -cyclodextrin (HP $$\beta$$ CD) to enhance its bioavailability. The modified curcumin was loaded into gelatin-carrageenan microparticles to control the drug release behavior. The different… Click to show full abstract
Curcumin was modified with 2-hydroxypropyl- $$\beta$$ -cyclodextrin (HP $$\beta$$ CD) to enhance its bioavailability. The modified curcumin was loaded into gelatin-carrageenan microparticles to control the drug release behavior. The different analytical techniques like Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) indicated the formation of the samples. The solubility of the modified curcumin was checked visibly and by using UV-VIS spectroscopy & optical microscopy as well. The effect of surfactant on process yield, drug loading & encapsulation efficiency, swelling and drug release from the microparticles was checked. The samples exhibited more swelling and hence drug release was more in basic compared to acidic medium and the percentage increased with increase in time. The modified curcumin, on examining in both breast and lung cancer cell lines, manifested better anticancer activity compared to curcumin as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, clonogenic assay and apoptosis assay. However, the microparticles didn’t reveal better anticancer activities compared to curcumin and modified curcumin. Further, all the prepared samples were found to be non-toxic to human peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs).
               
Click one of the above tabs to view related content.