LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rice callus extracts for enhancing skin wound healing

Photo from wikipedia

Enhanced cell migration in the course of wound healing is required to repair damaged skin. We investigated the effects of rice callus extracts on the migration of skin keratinocytes. Rice… Click to show full abstract

Enhanced cell migration in the course of wound healing is required to repair damaged skin. We investigated the effects of rice callus extracts on the migration of skin keratinocytes. Rice callus extracts were obtained by using three different methods: pressurized hot water, crude ethanol, and liquid-liquid extractions. The extract obtained by using crude ethanol extraction was more effective in the migration of skin cells than that obtained by pressurized hot water extraction (PHWE). The crude ethanol extract (CEE) was further partitioned by performing liquid-liquid extraction. As phenolics are inhibitory compounds affecting cell migration, we analyzed the total phenolic content of the rice callus extracts. The level of phenolics in the n-hexane partitioned extract (n-HPE) of CEE was lower than that in all other partitioned extracts. The n-HPE was most effective in enhancing cell migration. We analyzed wound healingrelated factors including platelet derived growth factor B (PDGF-B), transforming growth factor beta 1 (TGF-β1), heparin-binding epidermal growth factor (HB-EGF), and fibroblast growth factor 2 (FGF-2) after the treatment of n-HPE. Most of the expressions of cell migration-related growth factors increased, but HB-EGF dramatically increased (6.5-fold) in keratinocytes treated with n-HPE. The results indicate that n-HPE contains more stimulating growth factors or proteins and less cell migration inhibiting factors than the other tested extracts; thus, n-HPE treatment produced the greatest enhancement of cell migration.

Keywords: callus extracts; cell migration; migration; growth; rice callus

Journal Title: Biotechnology and Bioprocess Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.