LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Screening, expression, and characterization of Baeyer-Villiger monooxygenases for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid

Photo by sharonmccutcheon from unsplash

In this study, the production of 9-(nonanoyloxy) nonanoic acid from oleic acid was investigated. The whole cell biotransformation of oleic acid includes OhyA (hydratase), ADH (alcohol dehydrdogenase), and BVMO (Baeyer-Villiger… Click to show full abstract

In this study, the production of 9-(nonanoyloxy) nonanoic acid from oleic acid was investigated. The whole cell biotransformation of oleic acid includes OhyA (hydratase), ADH (alcohol dehydrdogenase), and BVMO (Baeyer-Villiger Monooxygenase) enzymes consecutively. BVMOs are known to catalyze oxidative cleavage of long chain aliphatic ketones (e.g., 2-decanone, 10-ketooctadecanoic acid). However, the enzymes are difficult to overexpress in a soluble form in microorganisms. Thereby, this study has focused on screening and functional expression of the BVMOs in Escherichia coli. Initially BVMOs were selected by protein sequence analysis and were examined for their ability to express in soluble and active form to generate 9-(nonanoyloxy)nonanoic acid from oleic acid. Secondly various optimization strategies of inducer concentrations, co-expression with molecular chaperones, and different media conditions were investigated. Among the 9 BVMOs screened, three BVMOs were found to produce the target product and among these, Di_BVMO3 isolated from Dietzia sp. D5 was found to be best. Further, the soluble expression of Di_BVMO3 was enhanced by adding phosphoglycerate kinase as N-terminal fusion tag. The whole cell biotransformation with fusion enzyme resulted in 3 ~ 5-fold enhancement in product formation compared with the non-fusion counterpart. Final productivity up to 105.3 mg/L was achieved. Besides Di-BVMO3, other two new BVMOs of Rh_BVMO4 from Rhodococcus sp. RHA1 and AFL838 from Aspergillus flavus NRRL3357 were screened for production of 9-(nonanoyloxy)nonanoic acid and could be used for whole cell biotransformation reaction of other long chain ketones.

Keywords: nonanoyloxy nonanoic; nonanoic acid; production nonanoyloxy; oleic acid; acid oleic; acid

Journal Title: Biotechnology and Bioprocess Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.