Transdermal drug delivery systems have been studied as an attractive alternative to conventional delivery routes. However, the outermost layer of the skin, the stratum corneum, acts as a primary barrier… Click to show full abstract
Transdermal drug delivery systems have been studied as an attractive alternative to conventional delivery routes. However, the outermost layer of the skin, the stratum corneum, acts as a primary barrier to drug delivery. A synergistic combination of microneedles (MNs) and low-frequency ultrasound (U) was used to enhance the penetration of siRNA and ovalbumin. The specific gene knockdown caused by siRNAs through the RNA interference pathway is more stable when delivered via the transdermal route. Ovalbumin, a representative adjuvant, causes a more efficient immune response in the skin because of the numerous immune cells in the skin. The synergistic transdermal delivery resulted in approximately 7 times and 15 times greater penetration of siRNA and ovalbumin respectively than in their respective negative controls, and histological analysis showed minimal invasion. Thus, as the synergistic transdermal delivery enhanced the penetration of biomacromolecules into the skin, this technique is expected to yield a promising technology for a transdermal drug delivery system.
               
Click one of the above tabs to view related content.