LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production of 5-aminolevulinic Acid by Recombinant Streptomyces coelicolor Expressing hemA from Rhodobacter sphaeroides

Photo by austriannationallibrary from unsplash

Over the past two decades, intensive efforts have been made to construct recombinant Escherichia coli or Corynebacterium glutamicum by engineering C4 or C5 pathways to improve microbial production of 5-aminolevulinic… Click to show full abstract

Over the past two decades, intensive efforts have been made to construct recombinant Escherichia coli or Corynebacterium glutamicum by engineering C4 or C5 pathways to improve microbial production of 5-aminolevulinic acid (ALA), which has medical application for photodynamic cancer therapy and tumor diagnosis. In this study, we explored the feasibility of enhanced production of ALA by expressing C4 pathway enzyme, ALA synthase, in Streptomyces coelicolor, and medium optimization. The hemA from Rhodobacter sphaeroides was successfully integrated into the chromosome of Streptomyces coelicolor by conjugal transformation, and recombinant Streptomyces cells expressed well the foreign hemA. Glucose promoted ALA synthesis, and yeast extract showed a strong positive effect on ALA production. Optimization of casamino acid, peptone, malt extract, glycine, and succinic acid increased the product titer. In flask cultures, cell growth and ALA production of recombinant Streptomyces were 2.3 and 3.0-fold higher, respectively, in optimal medium than those of control. The maximum ALA, 137mg/L, was obtained at 28 h in bioreactor culture, in which 3.1-fold higher cell mass and 2.9-fold greater volumetric productivity were achieved, compared to those in flask cultures.

Keywords: hema; streptomyces coelicolor; production; recombinant streptomyces; acid

Journal Title: Biotechnology and Bioprocess Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.