LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MoS2-graphene in-plane contact for high interfacial thermal conduction

Photo by rparmly from unsplash

Recent studies have indicated that two-dimensional (2D) MoS2 exhibits low in-plane and inter-plane thermal conductivities. This poses a significant challenge to heat management in MoS2-based electronic devices. To address this… Click to show full abstract

Recent studies have indicated that two-dimensional (2D) MoS2 exhibits low in-plane and inter-plane thermal conductivities. This poses a significant challenge to heat management in MoS2-based electronic devices. To address this challenge, we have designed MoS2-graphene interfaces that fully utilize graphene, a 2D material that exhibits very high thermal conductivity. First, we performed ab initio atomistic simulations to understand bonding and structural stability at the interfaces. The interfaces that we designed, which were connected via strong covalent bonds between Mo and C atoms, were energetically stable. We then performed molecular dynamics simulations to investigate interfacial thermal conductance in these materials. Surprisingly, the interfacial thermal conductance was high and comparable to those of covalently bonded graphene-metal interfaces. Importantly, each interfacial Mo–C bond served as an independent thermal channel, enabling modulation of the interfacial thermal conductance by controlling the Mo vacancy concentration at the interface. The present work provides a viable heat management strategy for MoS2-based electronic devices.

Keywords: interfacial thermal; thermal conductance; plane; mos2 graphene

Journal Title: Nano Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.