LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Active {010} facet-exposed Cu2MoS4 nanotube as high-efficiency photocatalyst

Photo by martindorsch from unsplash

Rational design and facet-engineering of nanocrystal is an effective strategy to optimize the catalytic performance of abundant and economic semiconductor-based photocatalysts. In this study, we demonstrate a novel ternary Cu2MoS4… Click to show full abstract

Rational design and facet-engineering of nanocrystal is an effective strategy to optimize the catalytic performance of abundant and economic semiconductor-based photocatalysts. In this study, we demonstrate a novel ternary Cu2MoS4 nanotube with the {010} facet exposed, synthesized via a hydrothermal method. Compared with two-dimensional Cu2MoS4 nanosheet with the {001} facet exposed, this one-dimensional nanotube exhibits highly enhanced performance of photodegradation and water splitting. Both theoretical calculations and experimental results suggest that the conduction band minimum (CBM) of the {010} facet crystal shows lower potential than that of the {001} facet. In particular, the up-shifted CBM in Cu2MoS4 nanotube is significantly beneficial for the absorption of dye molecules and reduction of H+ to H2. These results may open a new route for realizing high-efficiency photocatalysts based on Cu2MX4 by facet engineering.

Keywords: high efficiency; cu2mos4 nanotube; cu2mos4; facet exposed; 010 facet; facet

Journal Title: Nano Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.