LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile growth of ultra-small Pd nanoparticles on zeolite-templated mesocellular graphene foam for enhanced alcohol electrooxidation

Photo by anniespratt from unsplash

AbstractLabor-saving preparation of highly active electrocatalysts for alcohols oxidation, especially for the ethylene glycol and glycerol electrooxidation is of great importance for the development of fuel cells. Herein, mesocellular graphene… Click to show full abstract

AbstractLabor-saving preparation of highly active electrocatalysts for alcohols oxidation, especially for the ethylene glycol and glycerol electrooxidation is of great importance for the development of fuel cells. Herein, mesocellular graphene foam (MGF) constructed by ultrathin nanosheets were prepared using lamellar MCM-22 zeolite as template and then ultra-small Pd NPs were facile grew on it via the stabilizer-free synthesis. Detailed characterizations showed that the obtained Pd/MGF had large surface area, hierarchical porous architecture, semi-graphitic framework and dispersed Pd NPs anchoring. Electrochemical measurements demonstrated that Pd/MGF possessed the higher catalytic activity (1.7–2.9 fold higher) and stability for the different alcohols electrooxidation, especially for the ethylene glycol and glycerol electrooxidation in the alkaline solution, than the commercial Pd/C (10 wt.%) catalyst. Reaction kinetics analysis revealed the expanded diffusion-controlled process of Pd/MGF as compared to Pd/C. These findings promised a potential electrocatalyst for DAFC, especially for the direct ethylene glycol or glycerol fuel cells with high energy density.

Keywords: electrooxidation; ultra small; graphene foam; mesocellular graphene

Journal Title: Nano Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.