AbstractUsing capacitance, conductance and noise measurements, we investigate the trapping behavior at the surface and in the core of triangular-shaped one-dimensional (1D) array of GaN nanowire gate-all-around field effect transistor… Click to show full abstract
AbstractUsing capacitance, conductance and noise measurements, we investigate the trapping behavior at the surface and in the core of triangular-shaped one-dimensional (1D) array of GaN nanowire gate-all-around field effect transistor (GAA FET), fabricated via a top-down process. The surface traps in such a low dimensional device play a crucial role in determining the device performance. The estimated surface trap density rapidly decreases with increasing frequency, ranging from 6.07 × 1012 cm−2·eV−1 at 1 kHz to 1.90 × 1011 cm−2·eV−1 at 1 MHz, respectively. The noise results reveal that the power spectral density increases with gate voltage and clearly exhibits 1/f-noise signature in the accumulation region (Vgs > Vth = 3.4 V) for all frquencies. In the surface depletion region (1.5 V < Vgs < Vth), the device is governed by 1/f at lower frequencies and 1/f2 noise at frequencies higher than ~ 5 kHz. The 1/f2 noise characteristics is attributed to additional generation–recombination (G–R), mostly caused by the electron trapping/detrapping process through deep traps located in the surface depletion region of the nanowire. The cutoff frequency for the 1/f2 noise characteristics further shifts to lower frequency of 102–103 Hz when the device operates in deep-subthreshold region (Vgs < 1.5 V). In this regime, the electron trapping/detrapping process through deep traps expands into the totally depleted nanowire core and the G–R noise prevails in the entire nanowire channel.
               
Click one of the above tabs to view related content.