LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DNA origami mediated electrically connected metal—semiconductor junctions

Photo from wikipedia

DNA-based nanofabrication of inorganic nanostructures has potential application in electronics, catalysis, and plasmonics. Previous DNA metallization has generated conductive DNA-assembled nanostructures; however, the use of semiconductors and the development of… Click to show full abstract

DNA-based nanofabrication of inorganic nanostructures has potential application in electronics, catalysis, and plasmonics. Previous DNA metallization has generated conductive DNA-assembled nanostructures; however, the use of semiconductors and the development of well-connected nanoscale metal—semiconductor junctions on DNA nanostructures are still at an early stage. Herein, we report the first fabrication of multiple electrically connected metal—semiconductor junctions on individual DNA origami by location-specific binding of gold and tellurium nanorods. Nanorod attachment to DNA origami was via DNA hybridization for Au and by electrostatic interaction for Te. Electroless gold plating was used to create nanoscale metal—semiconductor interfaces by filling the gaps between Au and Te nanorods. Two-point electrical characterization indicated that the Au—Te—Au junctions were electrically connected, with current—voltage properties consistent with a Schottky junction. DNA-based nanofabrication of metal—semiconductor junctions opens up potential opportunities in nanoelectronics, demonstrating the power of this bottom-up approach.

Keywords: electrically connected; metal semiconductor; semiconductor junctions; dna

Journal Title: Nano Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.