LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co3(hexahydroxytriphenylene)2: A conductive metal—organic framework for ambient electrocatalytic N2 reduction to NH3

Photo by itfeelslikefilm from unsplash

As a carbon-neutral alternative to the Haber-Bosch process, electrochemical N2 reduction enables environment-friendly NH3 synthesis at ambient conditions but needs active electrocatalysts for the N2 reduction reaction. Here, we report… Click to show full abstract

As a carbon-neutral alternative to the Haber-Bosch process, electrochemical N2 reduction enables environment-friendly NH3 synthesis at ambient conditions but needs active electrocatalysts for the N2 reduction reaction. Here, we report that conductive metal—organic framework Co3(hexahydroxytriphenylene)2 (Co3HHTP2) nanoparticles act as an efficient catalyst for ambient electrochemical N2-to-NH3 fixation. When tested in 0.5 M LiClO4, such Co3HHTP2 achieves a large NH3 yield of 22.14 µg·h−1mg−1cat. with a faradaic efficiency of 3.34% at −0.40 V versus the reversible hydrogen electrode. This catalyst also shows high electrochemical stability and excellent selectivity toward NH3 synthesis.

Keywords: reduction; metal organic; co3 hexahydroxytriphenylene; conductive metal; organic framework

Journal Title: Nano Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.