LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites

Photo from wikipedia

Photocatalysis, via conversion of light into valuable chemicals, is an economic and effective way to utilize inexhaustible solar energy for the sustainable development of our human society. Aiming at killing… Click to show full abstract

Photocatalysis, via conversion of light into valuable chemicals, is an economic and effective way to utilize inexhaustible solar energy for the sustainable development of our human society. Aiming at killing two birds with one stone, metal nanoparticle (MNP)/metal-organic framework (MOF) composites via integration of the individual advantages of MNP and MOF have been becoming a versatile photocatalyst. Moreover, owing to the synergist effect between each component, MNP/MOF composite photocatalysts usually show greatly promoted catalytic activity, selectivity and long-term recyclability. In this review, first of all, the widely adopted synthesis strategies of MNP/MOF composite are introduced comprehensively, and then their recent advances in photocatalysis including photocatalytic hydrogen production, carbon dioxide reduction, organic transformation reactions and photodegradation of pollutants are summarized and highlighted. Finally, challenges and perspectives among MNP/MOF based photocatalysis are also proposed and discussed for advancing further development in this hot research field.

Keywords: metal organic; metal; mnp mof; metal nanoparticle; organic framework

Journal Title: Nano Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.