The urea oxidation reaction has attracted increasing attention. Here, porous rod-like Ni2P/Ni assemblies, which consist of numerous nanoparticle subunits with matching interfaces at the nanoscale have been synthesized via a… Click to show full abstract
The urea oxidation reaction has attracted increasing attention. Here, porous rod-like Ni2P/Ni assemblies, which consist of numerous nanoparticle subunits with matching interfaces at the nanoscale have been synthesized via a simple phosphating approach. Density functional theory calculations and density of states indicate that porous rod-like Ni2P/Ni assemblies can significantly enhance the activity of chemical bonds and the conductivity compared with NiO/Ni toward the urea oxidation reaction. The optimal catalyst of Ni2P/Ni can deliver a low overpotential of 50 mV at 10 mA·cm−2 and Tafel slope of 87.6 mV·dec−1 in urea oxidation reaction. Moreover, the constructed electrolytic cell exhibits a current density of 10 mA·cm−2 at a cell voltage of 1.47 V and an outstanding durability in the two-electrode system. This work has provided a new possibility to fabricate metal phosphides-metal assemblies with advanced performance.
               
Click one of the above tabs to view related content.