LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flow modelling of quasi-Newtonian fluids in two-scale fibrous fabrics

Photo by artsmarts from unsplash

Permeability is the fundamental macroscopic material property needed to quantify the flow in a fibrous medium viewed as a porous medium. Composite processing models require the permeability as input data… Click to show full abstract

Permeability is the fundamental macroscopic material property needed to quantify the flow in a fibrous medium viewed as a porous medium. Composite processing models require the permeability as input data to predict flow patterns and pressure fields. In a previous work, the expressions of macroscopic permeability were derived in a double-scale porosity medium for both Newtonian and generalized Newtonian (shear-thinning) resins. In the linear case, only a microscopic calculation on a representative volume is required, implying as many microscopic calculations as there are representative microscopic volumes in the whole fibrous structure. In the non-linear case, and even when the porous microstructure can be described by a unique representative volume, a large number of microscopic calculations must be carried out as the microscale resin viscosity depends on the macroscopic velocity, which in turn depends on the permeability that results from a microscopic calculation. An original and efficient offline-online procedure was proposed for the solution of non-linear flow problems related to generalized Newtonian fluids in porous media. In this paper, this procedure is generalized to quasi-Newtonian fluids in order to evaluate the effect of extensional viscosity on the resulting upscaled permeability. This work constitutes a natural step forward in the definition of equivalent saturated permeabilities for linear and non-linear fluids.

Keywords: modelling quasi; quasi newtonian; non linear; flow modelling; permeability; newtonian fluids

Journal Title: International Journal of Material Forming
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.