Linear flow splitting is a multi-station sheet-bulk metal forming process which allows continuous production of bifurcated profiles without joining, lamination or external heating of sheet metal. This process induces high… Click to show full abstract
Linear flow splitting is a multi-station sheet-bulk metal forming process which allows continuous production of bifurcated profiles without joining, lamination or external heating of sheet metal. This process induces high hydrostatic stresses in the forming zone which leads to an elevated formability of the workpiece material. The aim of this research is to bend linear flow split profiles in transverse direction in a continuous manner. This is achieved by combining the linear flow splitting process with a continuous bending process. An analytical and a numerical model are described in this paper which predict bending moments for different radii. Results from both models are validated with experimental results. It is found that combining the linear flow splitting with a bending process leads to a severe reduction in the bending moments due to superposition of stresses in the forming zone. The superposition maintains the cross sectional shape of the bent profiles.
               
Click one of the above tabs to view related content.