LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive metamodel-assisted shape optimization for springback in metal forming processes

Photo by viazavier from unsplash

This paper aims to propose a shape optimization strategy for springback shape in metal forming processes based on the adaptive metamodel of the spatial field that can reduce the computational… Click to show full abstract

This paper aims to propose a shape optimization strategy for springback shape in metal forming processes based on the adaptive metamodel of the spatial field that can reduce the computational time and cost. The first stage includes solving metal forming problem using finite element simulation and building of Reduction Order Model of spatial field based on Proper Orthogonal Decomposition. Then, the metamodel of spatial field is built using the combination of Reduction Order Model and Kriging method to replace the expensive high fidelity model. In the second stage, the metamodel of spatial field is used within the iterative optimization procedure to find the optimal design for the final shape after springback in the metal forming processes. This strategy allows reducing computational cost to achieve the optimal design with respect to the approach based on the traditional metamodel. The proposed methodology is illustrated with the “U-shape bending” from the Numisheet2011 benchmark problem. Two parameters: the blank holder force and the die radius are chosen to optimize the springback effect.

Keywords: metal forming; shape; springback; forming processes; optimization

Journal Title: International Journal of Material Forming
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.