The pre-stack Amplitude Variation with Offset (AVO) elastic parameter inversion technique combined with an intelligent optimization algorithm provides a more effective identification method for oil and gas exploration. However, biological… Click to show full abstract
The pre-stack Amplitude Variation with Offset (AVO) elastic parameter inversion technique combined with an intelligent optimization algorithm provides a more effective identification method for oil and gas exploration. However, biological evolution-based optimization algorithms, such as genetic algorithm, generally suffer problems such as premature convergence and high probability of becoming trapped in a local optimum, and these problems lead to unsatisfactory inversion results. To solve the above problems, this paper proposes a swarm-intelligence-based brain storm optimization algorithm, which is more suitable for solving the inversion problem of pre-stack AVO elastic parameters. The algorithm employs a specific initialization strategy for Aki and Rechard’s approximation equation, which is used in the inversion process, to produce a smoother initialization parameter curve. Multiple experiments prove that the correlation coefficients of the elastic parameters obtained by inversion are high, while the inversion accuracy is improved significantly.
               
Click one of the above tabs to view related content.