BackgroundDoxorubicin is the mainstay of curative lymphoma treatment but is associated with a dose-dependent cardiotoxicity that is often recognized too late to avoid substantial irreversible cardiac injury. Iodine-123 metaiodobenzylguanidine (123I-MIBG)… Click to show full abstract
BackgroundDoxorubicin is the mainstay of curative lymphoma treatment but is associated with a dose-dependent cardiotoxicity that is often recognized too late to avoid substantial irreversible cardiac injury. Iodine-123 metaiodobenzylguanidine (123I-MIBG) is a gamma-emitting tracer that mimics noradrenaline uptake, storage, and release mechanisms in adrenergic presynaptic neurons. 123I-MIBG scintigraphy can be used for assessment of doxorubicin-induced injury to myocardial adrenergic neurons during treatment and could be the tool for early detection of doxorubicin cardiotoxicity, which is currently lacking.Methods and ResultsA total of 37 lymphoma patients scheduled for doxorubicin treatment were included in our study. 123I-MIBG imaging was performed prior to chemotherapy and after a median of 4 cycles of doxorubicin. Early and late heart-to-mediastinum ratios (H/Mearly and H/Mlate) and washout rate (WOR) were used for evaluation of cardiotoxicity. The prognostic value of 123I-MIBG results was assessed using left ventricular ejection fraction (LVEF) as measured by cardiac magnetic resonance at 1-year follow-up. We found a post-therapy increase in WOR (including nine patients with > 10% increase), which was not statistically significant (18.6 vs 23.4%, P = 0.09). The difference appeared to be driven by an increase in H/Mearly. LVEF decreased from baseline to 1-year follow-up (64 vs 58%, P = 0.03). LVEF change was not associated with changes in WOR (P = 0.5).ConclusionThe present study does not provide evidence for 123I-MIBG imaging as a clinically applicable tool for early detection of doxorubicin-induced cardiotoxicity.
               
Click one of the above tabs to view related content.