LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving detection accuracy of perfusion defect in standard dose SPECT-myocardial perfusion imaging by deep-learning denoising

Photo from wikipedia

We previously developed a deep-learning (DL) network for image denoising in SPECT-myocardial perfusion imaging (MPI). Here we investigate whether this DL network can be utilized for improving detection of perfusion… Click to show full abstract

We previously developed a deep-learning (DL) network for image denoising in SPECT-myocardial perfusion imaging (MPI). Here we investigate whether this DL network can be utilized for improving detection of perfusion defects in standard-dose clinical acquisitions. To quantify perfusion-defect detection accuracy, we conducted a receiver-operating characteristic (ROC) analysis on reconstructed images with and without processing by the DL network using a set of clinical SPECT-MPI data from 190 subjects. For perfusion-defect detection hybrid studies were used as ground truth, which were created from clinically normal studies with simulated realistic lesions inserted. We considered ordered-subset expectation-maximization (OSEM) reconstruction with corrections for attenuation, resolution, and scatter and with 3D Gaussian post-filtering. Total perfusion deficit (TPD) scores, computed by Quantitative Perfusion SPECT (QPS) software, were used to evaluate the reconstructed images. Compared to reconstruction with optimal Gaussian post-filtering (sigma = 1.2 voxels), further DL denoising increased the area under the ROC curve (AUC) from 0.80 to 0.88 (P-value < 10−4). For reconstruction with less Gaussian post-filtering (sigma = 0.8 voxels), thus better spatial resolution, DL denoising increased the AUC value from 0.78 to 0.86 (P-value < 10−4) and achieved better spatial resolution in reconstruction. DL denoising can effectively improve the detection of abnormal defects in standard-dose SPECT-MPI images over conventional reconstruction.

Keywords: reconstruction; detection; perfusion; standard dose; deep learning; perfusion defect

Journal Title: Journal of Nuclear Cardiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.