LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The spatial analysis of thunderstorm hazard in Iran

Photo by dawson2406 from unsplash

In this study, monthly, quarterly, and annual frequency data of thunderstorm days of 25 long-term synoptic weather stations during the period from 1960 to 2010 were analyzed applying Ward’s Hierarchical… Click to show full abstract

In this study, monthly, quarterly, and annual frequency data of thunderstorm days of 25 long-term synoptic weather stations during the period from 1960 to 2010 were analyzed applying Ward’s Hierarchical Cluster Analysis (WHCA) Method and Kriging Geostatistical Method (KGM). The results of temporal analysis of Thunderstorm Days (TD) in Iran showed that in terms of frequency, seasonal occurrence of this phenomenon is mostly in transitional seasons of spring and autumn. The results of WHCA to find homogeneous places in terms of synchronization and timing of TD reflects the fact that there are five clusters with similar memberships, including the North West, West, the southern part, northern, central, and northeastern parts, eastern regions, and center of Iran, and in this classification, the frequency of occurrence of TD reduces in the same order the regions are mentioned. In contrast, the lowest frequency of TD is in summer and winter seasons. In this study, it was found that among various deterministic and geostatistical methods, KGM is the most suitable one for thunderstorms hazard zonation and for classifying the different regions based on thunderstorm occurrence; WHCA is more suitable than other methods. The results of spatial analysis of thunderstorms point to the fact that the core of the mentioned thunderstorms is mostly in mountainous areas, particularly, highlands of North West and West of Iran. With regard to place, in the West part of the country, especially North West (Tabriz, Oroomieh, and Zanjan stations) and West, thunderstorms have higher frequencies, while the South East, South, Central, and eastern regions are less affected by the thunderstorm hazard.

Keywords: spatial analysis; analysis thunderstorm; analysis; thunderstorm; thunderstorm hazard

Journal Title: Arabian Journal of Geosciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.