LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of sedimentary facies with well logs: an indirect approach with multinomial logistic regression and artificial neural network

Photo from wikipedia

Taking K-successions of the H-Zone of the Pearl River Mouth Basin as a testing example, we used two kinds of approaches to implement the microfacies identification. One is a direct… Click to show full abstract

Taking K-successions of the H-Zone of the Pearl River Mouth Basin as a testing example, we used two kinds of approaches to implement the microfacies identification. One is a direct identification, the other is an indirect approach in which we conducted the lithofacies classification first and then identified the microfacies based on previously estimated lithofacies. Both approaches were trained and checked by interpretations of experienced geologists from real subsurface core data. Multinomial logistic regression (MLR) and artificial neural network (ANN) were used in these two approaches as classification algorithms. Cross-validations were implemented. The source data set was randomly divided into training subset and testing subset. Four models, namely, MLR_direct, ANN_direct, MLR_indirect, and ANN_indirect, were trained with the training subset. The result of the testing set shows that the direct approaches (MLR_direct and ANN_direct) perform relatively poor with a total accuracy around 75%. While the indirect approaches (MLR_indirect and ANN_indirect) perform much better with a total accuracy of around 89 and 82%, respectively. This indirect method is simple and reproducible, and it could lead to a robust way of analyzing sedimentary microfacies of horizontal wells with little core data or even are almost never cored while core data are available for nearby vertical wells.

Keywords: logistic regression; neural network; multinomial logistic; indirect approach; identification; artificial neural

Journal Title: Arabian Journal of Geosciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.