LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cretaceous paleomargin tilted blocks geometry in northern Tunisia: stratigraphic consideration and fault kinematic analysis

Photo by dawson2406 from unsplash

New stratigraphic data, lithostratigraphic correlations, and fault kinematic analysis are used to discuss the basin geometry and sedimentation patterns of the northeastern Tunisia during Cretaceous times. Significant facies and thickness… Click to show full abstract

New stratigraphic data, lithostratigraphic correlations, and fault kinematic analysis are used to discuss the basin geometry and sedimentation patterns of the northeastern Tunisia during Cretaceous times. Significant facies and thickness variations are deduced along the northeastern Atlas of Tunisia. The NW-SE 80-km-long regional correlation suggests a high sedimentation rate associated with irregular sea floor. The fault kinematic analysis highlights N-S to NE-SW tectonic extension during Early Cretaceous. During Aptian–Albian times, an extensional regime is recognized with NE-SW tectonic extension. The Cenomanian–Turonian fault populations highlight a WNW-ESE to NW-SE extension, and Campanian–Maastrichtian faults illustrate an NW-SE extension. The normal faulting is associated to repetitive local depocenters with a high rate of sedimentation as well as abundant syntectonic conglomeratic horizons, slump folds, and halokinetic structures. The sequence correlation shows repetitive local depocenters characterizing the basin during Early Cretaceous times. All the above arguments are in favor of basin configuration with tilted blocks geometry. This geometry is shaped by major synsedimentary intra-basin listric normal faults, themselves related to the extensional setting of the southern Tethyan paleomargin, which persisted into the Campanian–Maastrichtian times. The results support a predominant relationship between tilted blocks geometry and sedimentation rather than E-W “Tunisian trough” as it was previously accepted.

Keywords: tilted blocks; blocks geometry; kinematic analysis; geometry; fault kinematic

Journal Title: Arabian Journal of Geosciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.