LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of crack processes in single-flawed rock-like material using two bonded–particle models under compression

Photo from wikipedia

The parallel bond model (PBM), one type of basic bonded particle model (BPM), has been diffusely studied in natural rock and rock-like material. It is well-known that BPMs yield unrealistically… Click to show full abstract

The parallel bond model (PBM), one type of basic bonded particle model (BPM), has been diffusely studied in natural rock and rock-like material. It is well-known that BPMs yield unrealistically low ratios of compressive to tensile strength (UCS/TS), friction angles and linear strength envelopes. The flat-joint model (FJM) overcomes those intrinsic deficiencies with a special structure. Thus, FJM can provide satisfactory replication of the mechanical behavior of rock-like materials. In this paper, rock-like material samples containing a single flaw were constructed with flaw angles of 0°, 30°, 45°, 60°, and 90° measured from the horizontal. The PBM and FJM were used to simulate this rock-like material. The results of the numerical simulations were compared with observations from physical tests, including strength, main types of microcracks, macroscopic fracture zones, and location and sequence of the first and secondary cracks. The results demonstrate that (1) the flaw inclination angle had a significant effect on strength; (2) the FJM results showed better agreement with respect to the main types of microcracks and macroscopic fracture zones, reproducing vertical tension failure dominance over shear failure in the rock-like material, contrary to the PBM results; and (3) using the FJM to capture the initiation location, direction, and sequence of the first and secondary cracks is recommended.

Keywords: rock like; bonded particle; like material; rock

Journal Title: Arabian Journal of Geosciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.