LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of novel chitosan-humic acid-graphene oxide composite to improve adsorption properties for Cr(VI)

Photo by andreacaramello from unsplash

A novel chitosan-humic acid-graphene oxide (Cts-HA-GO) composite was produced and tested to remove hexavalent chromium (Cr(VI)) during the adsorption process. The percentage adsorption was 85.28% by using 200 ppm Cr(VI)… Click to show full abstract

A novel chitosan-humic acid-graphene oxide (Cts-HA-GO) composite was produced and tested to remove hexavalent chromium (Cr(VI)) during the adsorption process. The percentage adsorption was 85.28% by using 200 ppm Cr(VI) and 2 g/L composite. Four hours of contact time was enough to remove Cr(VI) from the aquatic medium. The extent of adsorption of Cr(VI) on the surface of Cts-HA-GO composite was examined on the basis of increasing quantity of the composite. The functional group characterization and morphology of composite was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. After reaching the equilibrium, the residual concentration of the Cr(VI) solution was measured with an UV-visible spectrophotometer. The results showed that the adsorption behaviour was in accordance with the Langmuir isotherm model, and the maximum adsorption capacity of Cr(VI) determined by using this model was 83.64 mg/g at the pH of 2. A pseudo-second-order model equation has justified the equilibrium between Cr(VI) and the composite for the kinetic studies. Graphical abstract Graphical abstract

Keywords: graphene oxide; adsorption; novel chitosan; chitosan humic; acid graphene; humic acid

Journal Title: Arabian Journal of Geosciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.